#Evol2012: Evolution 2012 review, special Doug Emlen edition

I’m going to skip ahead in my review of the talks which I enjoyed at Evolution 2012 in Ottawa, as Doug Emlen‘s latest research has just been published in the latest issue of the prestigious journal Science. This gives me an excuse to write about his talk and the new paper, as well as to engage in gratuitous posting of beetle photos.

It makes me a bit sick when I think about how awesome this lab is.

I have a real soft spot for research on beetle horns, as followers of Nature!Sex!TopTips! may be aware, so I was really excited to see Emlen’s talk – even more so after the taster that was Erin McCullough’s presentation earlier in the week (McCullough is a PhD student co-supervised by Emlen and Bret Tobalske at the University of Montana’s ‘Flight Lab’). Research into animal weaponry often goes hand-in-hand with studies of ornaments because there is direct sexual selection upon them; females use ornaments as a basis on which to select a mate, while weapons are used by males to defeat rivals (or to assess their condition and status) and so gain access to females. Together, these exaggerated, elaborate structures are some of the most incredible sights we see in nature.

The rhinoceros beetle Trypoxylus dichotomus, used in both Erin McCullough’s work on how horn size affects flight and Doug Emlen’s research into the mechanistic basis of exaggerated trait expression. Photo copyright flickr user Mushimizu (note: open the link from this image in a new window to see the animated gif in action!)

It’s no surprise that a lot of research investigates these amazing traits, but there are still some big questions to grapple with. For example, they seem to be very reliable indicators of male quality – why should this be so? Can’t some males ‘cheat’ by somehow investing more into ornament or weapon growth than other things? Also, if females select upon a particular heritable trait, then shouldn’t we see very little variation by now, with all males having pretty much the same size of trait? Consider the range of deer antler size in comparison to, say, the range of deer leg length. Antlers are much, much more variable – but why?

Brief non-beetle interlude: red deer, showing the variability in antler size and shape. Image copyright David J Slater.

I’ve written about the maintenance of genetic variation in such traits before, both here and over at the Nothing in Biology Makes Sense blog, using the ‘genic capture’ model proposed by Rowe and Houle. This model posits that the continued evolution of sexually selected ornaments and weapons is enabled by these traits ‘capturing’ the underlying condition of the animals. An individual’s condition is affected by its general health, nutrition, parasite resistance, competitive ability, etc…  essentially, the genetic variation among males in terms of all these factors underlies the variation in these amazing traits. It’s this ‘condition-dependence’ of traits, a close association with the individual’s condition, which means that the expression level should be ‘unfakeable’ and thus a reliable indicator of male quality. Not only this, but it also allows the evolution of ever-more exaggerated ornaments and armaments. So, these traits have some particular characteristics which have triggered huge interest from an evolutionary point of view: extreme size, heightened sensitivity to condition, and much more variability than we see in other morphological traits. We often think of condition-dependence as a kind of ‘black box’ – environmental and genetic factors go in, and traits come out. Emlen’s current research asks the question of, well, what mechanism enables this to happen? What’s inside the black box that creates these incredible, extreme biological structures?

Emlen proposes that there is a developmental explanation for this, and it lies within the insulin / insulin-like growth factor (IGF) pathway. This pathway has emerged as the central mechanism in animals for integrating physiological condition with growth; insulin and IGFs not only regulate tissue growth and body size, but they are also sensitive to factors such as nutrition, stress and infection. The levels of insulin / IGF circulating in an individual would cause a graded response via this particular pathway, with growth speeding up or slowing down in response to changes in nutritional or physiological state – i.e., the same kind of factors which affect what we term ‘condition’. So far, so straightforward, you might think: there’s a pathway which controls tissue growth that depends on how healthy and well-nourished you are. But how might this lead to the evolution of highly exaggerated weapons and ornaments?

Well, here comes the even cooler bit: traits differ in how they respond to these signals. This can have a truly profound effect on the amount and nature of their growth. Some traits, like Drosophila genitalia size, are not particularly sensitive to insulin / IGF signalling, meaning that they tend to be around the same size in all individuals, no matter their nutritional state. Wings, meanwhile, are more sensitive to these signals. Within a variable population of fruit flies, with a normal range of body sizes, we would see variation in wing size approximately equal to variation in body size, while genitalia size would hardly vary at all. So, just as wings are more sensitive to insulin signalling in Drosophila than are genitals, Emlen predicted that exaggerated weapons or ornaments are even more sensitive than that. Such heightened sensitivity to insulin / IGF levels would explain how such traits grow to extreme sizes, why there is such huge variation within populations, and why such traits seem to be reliable indicators of underlying quality.

Normal beetle service has resumed: the male rhinoceros beetle Trypoxylus dichotomus. Image copyright flickr user golbenge.

Emlen and his colleagues tested this hypothesis in male rhinoceros beetles (Trypoxylus dichotomus), which have a large forked horn on the top of their head. They used RNA interference (RNAi) to perturb transcription of the insulin receptor (InR) – that is, they simply stopped this particular signalling pathway from working properly. They did this at the beginning of metamorphosis, a point when body size is no longer growing, but adult structures – such as genitalia, wings, and the huge sexually-selected horn – are. If increased cellular sensitivity to insulin / IGF signalling is at least partly responsible for the evolution of this exaggerated horn in these beetles, then horns should be more sensitive than wings to the experimental manipulation of the pathway activity via RNAi. Furthermore, Emlen and his team predicted that – just as with fruit flies – genitalia should be relatively insensitive to this disruption of insulin / IGF signalling.

Results showed that the genitalia of males whose InR pathway activity was disrupted did not show a significant reduction in size when compared to control males (which did not undergo the RNA interference treatment). Meanwhile, the wings of RNAi treatment males showed a significant reduction in size that measured around 2% in comparison to control males. This is typical of the majority of ‘metric’ traits, such as eyes, legs, etc. Horns, however, predicted to be the most sensitive to nutritional state, suffered a significant reduction of around 16% in RNAi treated males relative to control animals. This eight-fold increase in sensitivity of horns in comparison to wings is highly consistent with Emlen’s model of the evolution of exaggerated trait size from heightened sensitivity to this particular pathway – giving us a real insight into the black box of condition-dependence, and how such incredible traits evolved.

Note: I highly recommend reading the paper itself, not only because it’s very well-written, but also because Emlen does a great job of summarising models of sexual selection and condition-dependent traits, and the impact of this latest research on those models. Plus there’s some nice beetle pictures in there, and you love nice beetle pictures. DON’T YOU?

Read the Science paper here:

Emlen, D.J., Warren, I. A., Johns, A., Dworkin, I. and Corley-Lavine, L. (2012) A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science (in press).

Other references:

Rowe, L., & Houle, D. (1996). The lek paradox and the capture of genetic variance by condition dependent traits. Proc. Royal Soc. B, 263 (1375), 1415-1421.

Shingleton, A.W., Das, J., Vinicius, L. and Stern, D.L. (2005) The temporal requirements for insulin signaling during development in Drosophila. PLoS Biol. 3, e289.

Further reading:

Cotton, S., Fowler, K., Pomiankowski, A. (2004) Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Biol. Sci. 271, 771.

Emlen, D.J. (2008) The evolution of animal weapons. Annual Review of Ecology Evolution and Systematics 39: 387–413.

Houslay, T.M., Bussiere, L.F. (2012) Sexual Selection and Life History Allocation. In: eLS 2012, John Wiley & Sons, Ltd: Chichester.

Shingleton, A.W., Frankino, W.A., Flatt, T., Nijhout, T.H., Emlen, D.J. (2007) Size and shape: The developmental regulation of static allometry in insects. Bioessays 29, 536.

That’s right, I did just recommend a review paper that I wrote. You should know by now that I’m absolutely shameless.


4 thoughts on “#Evol2012: Evolution 2012 review, special Doug Emlen edition”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s