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Introduction

Overview

This tutorial accompanies our 2017 Behavioral Ecology paper, “Avoiding the misuse of BLUP in behavioral
ecology”. Here, we focus on individual variation in plasticity, studying (behavioural) traits measured
repeatedly across some environmental gradient. We will:

• Use random regression to test for individual variation in plasticity under a reaction norm perspective;
• Add an additional response variable to the random regression, and test for an association between

individual variation in intercepts/slopes and, for example, a single measure of lifetime fitness;
• Show how ‘character state’ models, set up in terms of environment-specific subtraits, can equally be

used to model individual variation in plasticity;
• Add the fitness measure to the character state model to demonstrate why thinking about how selection

acts on a trait in different environments may sometimes be a more intuitive way of looking at things
than trying to estimate selection on “plasticity” (although both perspectives are valid).

In this version of the tutorial, we illustrate these models using the R package MCMCglmm, developed by Jarrod
Hadfield. Visit the CRAN page for MCMCglmm here for links and citation info: https://cran.r-project.org/web/
packages/MCMCglmm/index.html.

MCMCglmm fits generalised linear mixed modes (GLMMs) in a Bayesian framework, using Markov chain
Monte Carlo techniques. We have also provided a separate tutorial for the R interface for ASReml, which fits
GLMMs using maximum likelihood (and so is likely more familiar to lme4 users) but is commercially licensed
software.

Updates, data sets and further tutorials associated with this paper can be found at https://tomhouslay.com/
tutorials/.

Aims

As with the previous tutorial (‘I. Multivariate modelling for individual variation’), we assume readers are
familiar with the general principles of specifying univariate mixed effects models, and in particular with
the use of MCMCglmm for univariate mixed effects models. Readers unfamiliar with MCMCglmm should look at
Jarrod Hadfield’s excellent course notes, available at the MCMCglmm CRAN page.

There are various papers that cover the fundamentals of mixed models for individual variation in behavioural
plasticity, and we recommend Dingemanse et al (2010) ‘Behavioural reaction norms: animal personality
meets individual plasticity’ and Brommer (2013) ‘Variation in plasticity of personality traits implies that the
ranking of personality measures changes between environmental contexts: calculating the cross-environmental
correlation’. We also provide further citations later in the tutorial for more specific topics.

We also use various methods for manipulating and visualising data frames using the tidyverse package
(including tidyr, dplyr, ggplot2 etc) — more details on their use can be found at http://r4ds.had.co.nz/.
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In our tutorial, we aim to teach the following:

• Specifying, fitting and interpreting a random regression model;
• Adding a second response variable to a random regression model;
• Restructuring data in a format suitable for character state models;
• Fitting and interpreting character state models;
• Interpreting MCMC credible intervals.

Packages required

There are several packages that you must have installed in R prior to starting this tutorial:

• MCMCglmm
• lme4
• nadiv
• tidyverse
• broom
• gridExtra

Behavioural plasticity

In this section, we will look at how one can test for and estimate individual variation in behavioural plasticity
— which is also known as individual by environment interaction (IxE). A common approach to studying IxE is
to utilise reaction norms which are typically assumed to be linear (first order function of the environmental
variable, E). Under this perspective IxE is present if individuals differ in the slope of their phenotypic
relationship to E. This variation in slopes (i.e. plasticities) can be modelled using random regression mixed
models.

Individual variation in plasticity

As in our previous tutorial, we use wild haggis (Haggis scoticus) as our study organism.

Here, we have measured aggression in another population of wild haggis (using individually tagged males).
Male haggis are territorial, and previous studies have suggested that aggressive behaviour tends to increase
with the size of a rival male. For this experiment, we used model ‘intruders’ to test for individual variation in
aggressive behaviour. These intruders were made up of 3 size classes: average male haggis size (calculated as
the population mean), 1 standard deviation below the population mean, and 1 standard deviation above. We
measured each focal male against each model size, and repeated this in 2 blocks (with test order randomised).
The body size of the focal individual was measured at the beginning of each block. We also have a fitness
proxy (a single measure of mating success for the season) for each male.

We want to test whether individuals vary in the extent of their aggression towards intruders, whether there
really is a dependence of aggression on intruder size (on average), and – if so – whether the plastic response
to intruder size varies among individuals (IxE). Finally, we want to test whether behavioural variation is
associated with fitness as we’d expect if aggression is under natural selection.

Load libraries and inspect data
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Figure 1: A male haggis in the wild (thanks to Emma Wood, http://www.ewood-art.co.uk/)

library(lme4)
library(MCMCglmm)
library(tidyverse)
library(broom)
library(nadiv)
library(gridExtra)
library(lattice)

df_plast <- read_csv("aggression.csv")

This data frame has 6 variables:

• Individual ID
• Experimental Block
• Individual body_size, as measured for each block
• The repeat number for each behavioural test, assay_rep
• Opponent size (opp_size), in standard deviations from the mean (i.e., -1,0,1)
• aggression, measured 6 times in total per individual (2 blocks of 3 tests)
• fitness, our measure of mating success, with a single value for each individual

As in the previous tutorial, we want to convert fitness to relative fitness by dividing each individual’s fitness
value by the mean population fitness. We will not be using the raw fitness value at all, so we can simply
overwite it in our data frame with this standardised version (of course, we do not change the csv file in which
our collected data is stored, so we can always get the raw values again if needed):
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df_plast <- df_plast %>%
mutate(fitness = fitness/mean(fitness, na.rm=TRUE))

An initial plot of the phenotypic data indicates that - as expected - there is a general increase in aggression
with opponent size (points are lightly jittered on the x-axis to show the spread of data a little better):
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From the above plot, and also from a quick look at the population mean for aggression at each opponent size
(below), we expect that our models should show a roughly linear increase in aggression (1 unit increase per
standard deviation of opponent size).

opp_size mean_aggr
-1 8.00
0 8.91
1 10.09

We will begin this tutorial by running through some quick models in lme4, which is probably familiar to
most readers, before moving on to more complex methods with MCMCglmm.

Random intercepts model (lme4)

We can quickly run a mixed model with only random intercepts, to see how it fits the data. Here we fit fixed
effects of opponent size (our predictor of interest), focal male body size (mean-centred and scaled), assay
repeat (mean-centred), and experimental block. As we only had 2 blocks, we fit this as a fixed rather than
random effect. Our random effect here is individual ID. So here we allow random intercepts to vary among
males, and we also allow population-level plasticity (change in mean aggression with opponent size), but we
do not model any IxE:
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lmer_a <- lmer(aggression ~ opp_size + scale(body_size) +
scale(assay_rep, scale = FALSE) + block +
(1|ID),

data = df_plast)

Diagnostic plots look fine:

plot(lmer_a)
qqnorm(residuals(lmer_a))

We then use the handy augment function from the broom package to get predictions for each of our observations.
Below, we plot the raw data for each individual in one panel, with the fitted slopes in a second panel. Because
we have 2 blocks as fixed effects, for ease of presentation we have selected only one of the blocks for this plot
(if you like, you can check the other blocks to reassure yourself that there is little overall difference - another
way would be to calculate predictions while averaging over block effects).

augment(lmer_a) %>%
select(ID, block, opp_size, .fitted, aggression) %>%
filter(block == -0.5) %>%
gather(type, aggression,

`.fitted`:aggression) %>%
ggplot(., aes(x = opp_size, y = aggression, group = ID)) +
geom_line(alpha = 0.3) +
theme_classic() +
facet_grid(.~type)

aggression .fitted
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This illustrates the importance of using model predictions to see whether the model actually fits the individual-
level data well or not — while the diagnostic plots looked fine, and the model captures mean plasticity, here
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we can see that the model really doesn’t fit the actual data very well at all. The code below provides a
different (and slightly more in-depth) look at this same combination of fitted slope / real data, and indicates
that the fitted slopes systematically under- (eg, ID_42, ID_43) and over-estimate (eg, ID_5, ID_25) plasticity
in aggression at the individual level (we have not shown the figure as it consists of 80 panels!).

# Create 'dummy' data frame for prediction
# - all IDs, all opponent sizes,
# - block set at 0 (as blocks are coded as -0.5, 0.5)
# - mean body size and assay repeats
df_ri_ind <- expand(df_plast,

ID, opp_size,
block = 0,
body_size = mean(body_size),
assay_rep = mean(assay_rep))

# Get predicted values based on RR model and dummy data frame
# and using random effects structure as in the model
df_ri_ind$fit <- predict(lmer_a, newdata = df_ri_ind, re.form = NULL)

# Plot predictions and overlay original data points
ggplot(df_ri_ind, aes(x = opp_size, y = fit, group = ID)) +

geom_line() +
geom_point(data = df_plast,

aes(y = aggression),
alpha = 0.3) +

scale_x_continuous(breaks = c(-1,0,1)) +
theme_classic() +
facet_wrap(~ID)

Now, let’s move on and test whether random slopes provide a better fit to the data. . .

Random regression (lme4)

lmer_a_rr <- lmer(aggression ~ opp_size + scale(body_size) +
scale(assay_rep, scale = FALSE) + block +
(opp_size|ID),

data = df_plast)

plot(lmer_a_rr)
qqnorm(residuals(lmer_a_rr))

Diagnostic plots for the random regression model also look good — let’s go ahead and check our predicted fit
(again, looking at a single block - simply change the filter specification to check predictions with the other):

augment(lmer_a_rr) %>%
select(ID, block, opp_size, .fitted, aggression) %>%
filter(block == -0.5) %>%
gather(type,aggression,

`.fitted`:aggression) %>%
ggplot(., aes(x = opp_size, y = aggression, group = ID)) +
geom_line(alpha = 0.3) +
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theme_classic() +
facet_grid(.~type)

aggression .fitted

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

8

10

12

opp_size

ag
gr

es
si

on

This certainly seems better, as it is capturing both mean plasticity and variation at the individual level.
Again, we have also provided code for a more in-depth look at individual predictions against the raw data:

# Create 'dummy' data frame for prediction
# - all IDs, all opponent sizes,
# - block set at 0 (as blocks are coded as -0.5, 0.5)
# - mean body size and assay repeats
df_rr_ind <- expand(df_plast,

ID, opp_size,
block = 0,
body_size = mean(body_size),
assay_rep = mean(assay_rep))

# Get predicted values based on RR model and dummy data frame
# and using random effects structure as in the model
df_rr_ind$fit <- predict(lmer_a_rr, newdata = df_rr_ind, re.form = NULL)

# Plot predictions and overlay original data points
ggplot(df_rr_ind, aes(x = opp_size, y = fit, group = ID)) +

geom_line() +
geom_point(data = df_plast,

aes(y = aggression),
alpha = 0.3) +

scale_x_continuous(breaks = c(-1,0,1)) +
theme_classic() +
facet_wrap(~ID)
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Compared to the individual-level plots of the random intercepts model, this appears to be doing a much
better job of fitting the data.

We can test the improvement of the model fit using the overloaded anova function in R to perform a likelihood
ratio test (LRT):

anova(lmer_a_rr, lmer_a)

## refitting model(s) with ML (instead of REML)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
lmer_a 7 1128.709 1157.925 -557.3544 1114.709 NA NA NA
lmer_a_rr 9 1070.269 1107.833 -526.1345 1052.269 62.43989 2 0

We can see here that the LRT uses a chi-square test with 2 degrees of freedom, and indicates that the random
slopes model shows a statistically significant improvement in model fit. The 2df are because there are two
additional (co)variance terms estimated in the random regression model: a variance term for individual slopes,
and the covariance (or correlation) between the slopes and intercepts. Let’s look at those values, and also the
fixed effects parameters, via the model summary:

summary(lmer_a_rr)

## Linear mixed model fit by REML ['lmerMod']
## Formula:
## aggression ~ opp_size + scale(body_size) + scale(assay_rep, scale = FALSE) +
## block + (opp_size | ID)
## Data: df_plast
##
## REML criterion at convergence: 1074.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.04930 -0.59780 -0.02004 0.59574 2.68010
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## ID (Intercept) 0.05043 0.2246
## opp_size 0.19166 0.4378 0.96
## Residual 0.42817 0.6543
## Number of obs: 480, groups: ID, 80
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 9.00181 0.03902 230.71
## opp_size 1.05033 0.06123 17.15
## scale(body_size) 0.02725 0.03377 0.81
## scale(assay_rep, scale = FALSE) -0.04702 0.03945 -1.19
## block -0.02169 0.05973 -0.36
##
## Correlation of Fixed Effects:
## (Intr) opp_sz scl(_) s(_s=F
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## opp_size 0.495
## scl(bdy_sz) 0.000 0.000
## s(_,s=FALSE 0.000 -0.064 -0.006
## block 0.000 0.000 0.002 0.000

From the fixed effects, we see that there is a strong effect of opponent size on aggression (1.05 SE 0.06, t
= 17.15) — so there is population-level plasticity at a rate anticipated from our earlier plots of raw data,
whereby aggression increases (on average) at a rate of 1 unit per standard deviation increase in opponent
size. Significance of fixed effects can be determined using likelihood ratio tests (you should find that testing
opp_size returns P<0.001). The other fixed effects in this model — individual body size, the order of assays,
and block effects — are small and non-significant.

Interpreting the random effects requires some care. Remember that the intercept variance is the among-
individual variance in aggression where x (here, opponent size) = 0. Here this corresponds to an average sized
opponent because of the way we scaled the environmental covariate. This is very important! A different
scaling would change the number (but not the model predictions!). There is also a highly positive
correlation between intercepts and slopes at the intercept x = 0, i.e., where opponent size is at the
mean population value. This positive correlation indicates that individuals with more positive intercept
deviations also have more positive slope deviations at x = 0.

When looking at our (above) plot of predicted individual slopes, it is clear that the intercept-slope correlation
is highly dependent on the positioning of the intercept. If the intercept was positioned elsewhere then we
might get a very different intercept-slope correlation. This is absolutely as it should be — for example, if we
had called our opponent sizes 1:3 then x=0 would be off to the far left, and the intercept-slope correlation
would be closer to -1 as it would be the least positive intercept deviations that had the most positive slope
deviations at that value of x. Failure to understand the dependence of the random effect parameters on the
scaling and centring of x means a high risk of interpreting the biological meaning of your model incorrectly.

Similarly, if there is IxE we have to be careful about drawing conclusions from the among-individual variation
in intercepts in our model summary. To reiterate, it is the variance among-individuals at x=0, but in the
presence of IxE (i.e., individual slopes are allowed to vary) then the among-individual variation changes
as a function of opponent size. So, it is not correct to view variation in intercepts as behavioural
variation that is “independent of the environment” as is sometimes stated. Furthermore, consider
again the hypothetical situation above where we coded our opponent sizes as 1:3 (rather than -1:1). In such a
situation, the variation in intercepts would still be calculated at x = 0, so not even in the range of where we
collected the data!

From the above plots, it is clear that (in the case of our data) here the among-individual variation in aggression
is greater at large opponent size than at small opponent size. Later in the tutorial we will look at different
methods that enable us to investigate changes in among-individual variance more explicitly. A more thorough
discussion of such issues when modelling IxE can be found in Nussey et al (2007) ‘The evolutionary ecology
of individual phenotypic plasticity in wild populations’.

This section was simply a quick reminder of how a random regression works – and some important notes on
interpretation – using what’s probably a familiar setup. For more advanced modelling techniques we will use
MCMCglmm, so let’s start by seeing how to run this same random regression model using that.

Random regression (MCMCglmm)

Specifying a random regression (also known as ‘random slopes’ models) in MCMCglmm is very similar to in lme4,
but the random term is slightly more involved because it can be used to fit different covariance structures for
the random effects.

To fit a random regression, in the random effects structure we use the code random =~ us(1 + opp_size):ID.
This means that we interact ID, the grouping variable, with a covariance matrix of effects: intercepts and
slopes for opponent sizes. The us keyword indicates that we want to fit an unstructured covariance matrix
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for these effects (i.e., we fit variance in intercepts, variance in slopes, and the covariance between them), and
interacting it with ID shows that we want random intercepts and random slopes for individuals. We do not
need to set up any specific structure for the residuals, so these are simply modelled as rcov =~ units.

We do need to specify a prior for our model – we recommend reading up on the use of priors, but (briefly)
we use a parameter-expanded prior here that should be uninformative for our model. One of the model
diagnostic steps that should be used later is to check that the model is robust to multiple prior specifications.

Other parts of the model specification should be familiar if you have been through the first of our MCMCglmm
tutorials already. Briefly, we provide the name of the object we set up as the model prior, and values for
the total number of iterations (nitt), the ‘burn-in’ of initial iterations to be discarded as the model starts
to converge (burnin), and the number of iterations to discard in between successive stored samplles (thin,
which helps to reduce autocorrelation in sampling). Finally, we provide the name of the data frame — we
enclose this in the as.data.frame function as MCMCglmm does not work with the tbl_df format used in the
tidyverse group of packages.

# Parameter-expanded prior should be uninformative
# for variances and covariance
prior_RR <- list(R = list(V = 1, nu = 0.002),

G = list(G1 = list(V = diag(2), nu = 2,
alpha.mu = rep(0, 2),
alpha.V= diag(25^2, 2, 2))))

mcmc_A_RR <- MCMCglmm(aggression ~ opp_size +
scale(assay_rep, scale=FALSE) +
scale(body_size) +
block,

random =~ us(1 + opp_size):ID,
rcov =~ units,
family = "gaussian",
prior = prior_RR,
nitt=750000,
burnin=50000,
thin=350,
verbose = TRUE,
data = as.data.frame(df_plast),
pr = TRUE,
saveX = TRUE, saveZ = TRUE)

After the model has been fit by MCMCglmm (which will take some time!), we can check some model diagnostics
using plots of the MCMC samples. The following code allows you to look at the trace/density plots of the
posterior distributions for the (co)variances; we don’t show these here as there are a number of panels, but
they should indicates no obvious problems (these plots are also available for fixed effects, using Sol):

plot(mcmc_A_RR$VCV)

As noted in the first tutorial, for current purposes these are fine to proceed with (assuming you have used
our simulated data and the settings above). Note, however, that for any real analysis then various other
checks and tests (e.g. of autocorrelation, robustness to different priors, and good model convergence using the
geweke.diag and gelman.diag diagnostic functions) should be used before accepting final results.

Given that a random regression allows IxE, we want to investigate whether there is support for the hypothesis
that individuals vary in the slope of aggression against opponent size. For fixed effects, statistical significance
of a variable can be determined by evaluating simply whether its 95% credible intervals cross zero (given that
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your model stands up to scrutiny of the diagnostic checks mentioned above!). However, things are slightly
trickier when we come to the random effects, as the posterior distribution for variance components should
never include zero. Let’s take a look at the trace and density plots for the posterior distribution of the
among-individual variation in slopes term:

plot(mcmc_A_RR$VCV[,"opp_size:opp_size.ID"])
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mean(mcmc_A_RR$VCV[,"opp_size:opp_size.ID"])

## [1] 0.2016104

HPDinterval(mcmc_A_RR$VCV[,"opp_size:opp_size.ID"])

## lower upper
## var1 0.1097826 0.3047987
## attr(,"Probability")
## [1] 0.95

The posterior distribution for slope variance looks good, and the credible intervals show that the lower
bound is not close to zero (although bear in mind that this isn’t always so easy – given that this distribution
should not include zero, care must be taken not to automatically dismiss variance that is significant but
small. . . ). Unlike lme4 and ASReml, MCMCglmm does not include formal model comparison tools, which can
make evaluating competing models difficult for those of us used to P-values! Let’s also fit a random intercepts
model, and then we can use another couple of techniques for comparing model fits.
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# Parameter-expanded prior for only a single random effect
prior_RI <- list(R = list(V = 1, nu = 0.002),

G = list(G1 = list(V = 1, nu = 1,
alpha.mu = 0,
alpha.V = 25^2)))

mcmc_A_RI <- MCMCglmm(aggression ~ opp_size +
scale(assay_rep, scale=FALSE) +
scale(body_size) +
block,

random =~ ID,
rcov =~ units,
family = "gaussian",
prior = prior_RI,
nitt=750000,
burnin=50000,
thin=350,
verbose = TRUE,
data = as.data.frame(df_plast),
pr = TRUE,
saveX = TRUE, saveZ = TRUE)

First off, it’s worth looking at diagnostic plots to check model convergence etc here before we start thinking
about comparing our two different models.

While MCMCglmm does provide DIC (Deviance Information Criterion) for model fits, the author of the package
has noted that this should not be used in formal model testing (see mailing list thread here). We might use
this as an informal guide, however, along with looking at the credible intervals and model predictions. Here
we see that the random slopes model has a much lower DIC score, indicating that it provides a better fit to
the data (even after penalising the additional parameters):

mcmc_A_RI$DIC

## [1] 1126.747

mcmc_A_RR$DIC

## [1] 1025.653

A very important part of assessing model fit is to look at how well the different models actually fit the data
(in this case, with a particular focus on what’s going on at the individual level). Here we’ll quickly create
a data frame that adds predictions from both the random intercepts and random regression models to the
original data. Ideally we would like to have predicted where block = 0, but for this quick look we can simply
take the mean of the predicted values for each block at each opponent size. Let’s take a side-by-side look at
the data, predictions from the random intercepts model, and predictions from the random regression model:

# Bind predictions of the random intercepts model
# and random regression model to the original data;
# Select variables of interest;
# Get mean values at each opp_size for each individual
# (within each 'type' of data), so that we are
# essentially averaging across block effects;
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# Convert to a 'long' format for plotting.
df_rand <- cbind(df_plast,

ri_fit = predict(mcmc_A_RI, marginal = NULL),
rr_fit = predict(mcmc_A_RR, marginal = NULL)) %>%

select(ID, opp_size, ri_fit, rr_fit, aggression) %>%
group_by(ID, opp_size) %>%
summarise(ri_fit = mean(ri_fit),

rr_fit = mean(rr_fit),
aggression = mean(aggression)) %>%

gather(Type, Value,
ri_fit:aggression)

# Plot separate panels for individual lines of each type
ggplot(df_rand, aes(x = opp_size, y = Value, group = ID)) +

geom_line(alpha = 0.3) +
scale_x_continuous(breaks = c(-1,0,1)) +
theme_classic() +
facet_grid(.~Type)
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These figures clearly illustrate the importance of using model predictions to see whether the model actually
fits the individual-level data well or not. For the random intercepts model, while the diagnostic plots looked
fine and the model captures mean plasticity (i.e., at the population-level), we can see that the model really
doesn’t fit the actual individual-level data very well at all. In contrast, the random regression model does
a much better job of fitting the individual variation (in addition to capturing mean plasticity in the fixed
effects).

Just as with the lmer models we looked at earlier, you can also look at panels of predictions and data for
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each individual, using both models:

df_ri_ind <- cbind(df_plast,
fit = predict(mcmc_A_RI, marginal = NULL)) %>%

select(ID, opp_size, fit) %>%
group_by(ID, opp_size) %>%
summarise(fit = mean(fit))

# Plot predictions and overlay original data points
ggplot(df_ri_ind, aes(x = opp_size, y = fit, group = ID)) +

geom_line() +
geom_point(data = df_plast,

aes(y = aggression),
alpha = 0.3) +

scale_x_continuous(breaks = c(-1,0,1)) +
theme_classic() +
facet_wrap(~ID)

df_rr_ind <- cbind(df_plast,
fit = predict(mcmc_A_RR, marginal = NULL)) %>%

select(ID, opp_size, fit) %>%
group_by(ID, opp_size) %>%
summarise(fit = mean(fit))

# Plot predictions and overlay original data points
ggplot(df_rr_ind, aes(x = opp_size, y = fit, group = ID)) +

geom_line() +
geom_point(data = df_plast,

aes(y = aggression),
alpha = 0.3) +

scale_x_continuous(breaks = c(-1,0,1)) +
theme_classic() +
facet_wrap(~ID)

Overall, our various checks indicate that the random slopes model provides a big improvement in model fit
compared to the random intercepts model. Let’s take a look at the model summary, and how to interpret the
output of a MCMCglmm random regression model:

summary(mcmc_A_RR)

##
## Iterations = 50001:749651
## Thinning interval = 350
## Sample size = 2000
##
## DIC: 1025.653
##
## G-structure: ~us(1 + opp_size):ID
##
## post.mean l-95% CI u-95% CI eff.samp
## (Intercept):(Intercept).ID 0.05778 0.02371 0.1001 2000
## opp_size:(Intercept).ID 0.08460 0.03893 0.1305 2000
## (Intercept):opp_size.ID 0.08460 0.03893 0.1305 2000
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## opp_size:opp_size.ID 0.20161 0.10978 0.3048 2059
##
## R-structure: ~units
##
## post.mean l-95% CI u-95% CI eff.samp
## units 0.4241 0.3641 0.4865 2000
##
## Location effects: aggression ~ opp_size + scale(assay_rep, scale = FALSE) + scale(body_size) + block
##
## post.mean l-95% CI u-95% CI eff.samp
## (Intercept) 9.00246 8.92611 9.08057 2000
## opp_size 1.05098 0.93574 1.17227 2000
## scale(assay_rep, scale = FALSE) -0.04732 -0.12315 0.03023 2000
## scale(body_size) 0.02874 -0.03862 0.09883 2000
## block -0.02167 -0.13497 0.09947 2000
## pMCMC
## (Intercept) <5e-04 ***
## opp_size <5e-04 ***
## scale(assay_rep, scale = FALSE) 0.251
## scale(body_size) 0.418
## block 0.728
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Taking the Location effects first, just as with the lmer fits then the fixed effects show a significant
effect of opponent size on aggression (the 95% credible intervals clearly distinct from zero) — so there is
population-level plasticity at a rate anticipated from our earlier plots of raw data, whereby aggression increases
(on average) at a rate of just over 1 unit per standard deviation increase in opponent size. Significance of
fixed effects can be determined from the MCMC credible intervals, and in the fixed effects you also get a
pMCMC value. The other fixed effects in this model — individual body size, the order of assays, and block
effects — are small and non-significant.

The G-structure part gives us information about the random effects. The labels correspond to how we
would set up a covariance matrix for the intercept and slope variance:

Intercepts Slopes
Intercepts V COV
Slopes COV V

. . . i.e., (Intercept):(Intercept).ID refers to the among-individual variation in intercepts, opp_size:opp_size.ID
to the among-individual variation in slopes, and the other labels refer to the covariances (the off-diagonals
in the above matrix). In addition to the estimate of the variance (here given as the mean of the posterior
distribution), MCMCglmm (unlike in lme4) also provides us with a sense of the uncertainty around each
estimate, in the form of the 95% credible intervals.

So, just as we found fitting the models with lmer, this result from MCMCglmm tells us there is among-individual
variation in behavioural plasticity (IxE) — i.e., individuals change their aggression at different rates in
response to opponent size.

For interpretation of the intercept-slope covariance, it is often easier to convert this to a correlation. Here we
can use the formula for a correlation with the posterior distributions of our (co)variance components, giving
us a distribution of correlation values that we can use to calculate estimates and 95% credible intervals:
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mcmc_cor_RR <- mcmc_A_RR$VCV[,"opp_size:(Intercept).ID"]/
(sqrt(mcmc_A_RR$VCV[,"(Intercept):(Intercept).ID"])*

sqrt(mcmc_A_RR$VCV[,"opp_size:opp_size.ID"]))

posterior.mode(mcmc_cor_RR)

## var1
## 0.8264322

HPDinterval(mcmc_cor_RR)

## lower upper
## var1 0.5710141 0.9956851
## attr(,"Probability")
## [1] 0.95

Just as in the lmer model, we find a strong positive correlation between among-individual variance in
intercepts and slopes, at the intercept (x = 0). This is a good time to revisit the earlier notes (at the end
of the lme4 section) about how we need to take a lot of care in how we interpret the variance components of a
random regression model, particularly because of the positioning of the intercept. It is particularly important
to bear that in mind as we move on to the next stage, where we will add a second response variable to our
random regression model.
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Bivariate model with random regression on one trait

Having established that there is among-individual variation in behavioural plasticity, we want to now test
whether there is an association between variation in aggression (intercept and/or slope) and ‘fitness’ (measured
as mating success — recall also that we standardised this to relative fitness earlier in the tutorial).

In this example, we have two response variables, but only one of them has repeated observations at the
individual level and is a function of the x variable (opponent size). We can set up the covariance matrix such
that we estimate random intercepts of both traits, and random slopes for trait 1 only:
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T1int T2int T1slope

T1int V COV COV
T2int COV V COV
T1slope COV COV V

In addition, as fitness is measured only once then we need to constrain the residual/‘within-individual’ variance
such that it is effectively zero (i.e., meaning that all the variance in fitness will be in the among-individual
level). We can do this in the R section of the prior, using the fix keyword. Note that the value of 0.0001 is
adequate here – a smaller value, such as 1e-08, can cause problems with the chain mixing (here speaks the
voice of bitter experience!). For the among-individual section, G, we use an uninformative parameter-expanded
prior for a 3x3 covariance matrix:

prior_biv_RR_px <- list(R = list(V = diag(c(1,0.0001),2,2), nu = 0.002, fix = 2),
G = list(G1 = list(V = matrix(c(1,0,0,

0,1,0,
0,0,1),3,3,

byrow = TRUE),
nu = 3,
alpha.mu = rep(0,3),
alpha.V = diag(25^2,3,3))))

Within the model specification itself, we standardise aggression by scaling it (to make the multivariate model
easier to fit), and we have already standardised fitness as relative fitness earlier on.

The at.level keyword specifies fixed effects as relating to only one of our response variables — here, we
have fixed effects of opponent size, block, repeat and body size for aggression (but not for fitness).

We set up our random effects in a similar way to the univariate random regression, but here we have 3
variance terms – random intercepts for both response traits, and random slopes for only the first response
trait, aggression (we use the at.level keyword here just as we did in the fixed effects). We then fit residual
variances for each of our response variables, but do not model the covariance between them (and remember
that we have set residual variance in fitness to be essentially zero).

mcmc_biv_RR <- MCMCglmm(cbind(scale(aggression),
fitness) ~ trait-1 +

at.level(trait,1):opp_size +
at.level(trait,1):scale(assay_rep, scale=FALSE) +
at.level(trait,1):block +
at.level(trait,1):scale(body_size),

random =~ us(trait + opp_size:at.level(trait,1)):ID,
rcov =~ idh(trait):units,
family = c("gaussian","gaussian"),
prior = prior_biv_RR_px,
nitt=950000,
burnin=50000,
thin=450,
verbose = TRUE,
data = as.data.frame(df_plast),
pr = TRUE,
saveX = TRUE, saveZ = TRUE)

plot(mcmc_biv_RR$VCV)
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Let’s take a look at the among-individual variance components for this model:

summary(mcmc_biv_RR)$Gcovariances

## post.mean
## traitaggression:traitaggression.ID 0.04368629
## traitfitness:traitaggression.ID 0.01577026
## opp_size:at.level(trait, 1):traitaggression.ID 0.06276634
## traitaggression:traitfitness.ID 0.01577026
## traitfitness:traitfitness.ID 0.02737424
## opp_size:at.level(trait, 1):traitfitness.ID 0.02855723
## traitaggression:opp_size:at.level(trait, 1).ID 0.06276634
## traitfitness:opp_size:at.level(trait, 1).ID 0.02855723
## opp_size:at.level(trait, 1):opp_size:at.level(trait, 1).ID 0.15120918
## l-95% CI
## traitaggression:traitaggression.ID 0.017661095
## traitfitness:traitaggression.ID 0.004799398
## opp_size:at.level(trait, 1):traitaggression.ID 0.028965667
## traitaggression:traitfitness.ID 0.004799398
## traitfitness:traitfitness.ID 0.019536828
## opp_size:at.level(trait, 1):traitfitness.ID 0.010199159
## traitaggression:opp_size:at.level(trait, 1).ID 0.028965667
## traitfitness:opp_size:at.level(trait, 1).ID 0.010199159
## opp_size:at.level(trait, 1):opp_size:at.level(trait, 1).ID 0.081258602
## u-95% CI
## traitaggression:traitaggression.ID 0.07256290
## traitfitness:traitaggression.ID 0.02764436
## opp_size:at.level(trait, 1):traitaggression.ID 0.09597746
## traitaggression:traitfitness.ID 0.02764436
## traitfitness:traitfitness.ID 0.03692282
## opp_size:at.level(trait, 1):traitfitness.ID 0.04769133
## traitaggression:opp_size:at.level(trait, 1).ID 0.09597746
## traitfitness:opp_size:at.level(trait, 1).ID 0.04769133
## opp_size:at.level(trait, 1):opp_size:at.level(trait, 1).ID 0.22394616
## eff.samp
## traitaggression:traitaggression.ID 1870.037
## traitfitness:traitaggression.ID 2201.828
## opp_size:at.level(trait, 1):traitaggression.ID 1987.031
## traitaggression:traitfitness.ID 2201.828
## traitfitness:traitfitness.ID 2000.000
## opp_size:at.level(trait, 1):traitfitness.ID 2151.262
## traitaggression:opp_size:at.level(trait, 1).ID 1987.031
## traitfitness:opp_size:at.level(trait, 1).ID 2151.262
## opp_size:at.level(trait, 1):opp_size:at.level(trait, 1).ID 2000.000

Just as with the random regression model, the summary of variance components gives us estimates (and upper
and lower 95% CIs, as well as the effective sample size) of the among-individual variances and covariances that
we could use to populate the 3x3 covariance matrix in which we are interested (with traitaggression being
variance in intercepts for aggression, opp_size:at.level(trait, 1) the variance in opponent size-related
slopes for aggression, and traitfitness the variance in intercepts for relative fitness). We can also find the
residual covariances using the Rcovariances part of the MCMCglmm model summary – you should look at this
to check that the residual fitness variance has been fixed at a very low number, as we set up in the prior.
A good ‘sanity check’ is to ensure that the among-individual correlation between intercepts and slopes for
aggression is (approximately) the same as we estimated in our earlier univariate random regression model.
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As we can see from our example matrix above, we should find the covariance between variance components 1
and 3 (denoted opp_size:at.level(trait, 1):traitaggression.ID), and then calculate the correlation
by standardising this by the product of the square root of both variances:

mcmc_cor_RR_intslope <- mcmc_biv_RR$VCV[,"opp_size:at.level(trait, 1):traitaggression.ID"]/
(sqrt(mcmc_biv_RR$VCV[,"traitaggression:traitaggression.ID"])*

sqrt(mcmc_biv_RR$VCV[,"opp_size:at.level(trait, 1):opp_size:at.level(trait, 1).ID"]))

plot(mcmc_cor_RR_intslope)
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posterior.mode(mcmc_cor_RR_intslope)

## var1
## 0.8656797

HPDinterval(mcmc_cor_RR_intslope)

## lower upper
## var1 0.550797 0.983601
## attr(,"Probability")
## [1] 0.95

This does look the same, which is as it should be!
Now, to the more interesting parts – determining the among-individual correlation between aggression and
fitness.
The covariance between elements 1 and 2 (line 1 of the summary, traitfitness:traitaggression.ID)
is the among-individual covariance between fitness and variation in intercepts for aggression — here we
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convert it to a correlation, and we find it is strongly positive. Note that, unlike variances, covariances (and
correlations) can take on positive and negative values, so we can use the 95% CIs to think about ‘significance’.

mcmc_cor_RR_intfit <- mcmc_biv_RR$VCV[,"traitfitness:traitaggression.ID"]/
(sqrt(mcmc_biv_RR$VCV[,"traitfitness:traitfitness.ID"])*

sqrt(mcmc_biv_RR$VCV[,"traitaggression:traitaggression.ID"]))

posterior.mode(mcmc_cor_RR_intfit)

## var1
## 0.4760913

HPDinterval(mcmc_cor_RR_intfit)

## lower upper
## var1 0.1750098 0.7085938
## attr(,"Probability")
## [1] 0.95

We also find a positive among-individual correlation between fitness and variation in slopes for aggression
(converting the covariance, opp_size:at.level(trait, 1):traitfitness.ID, to a correlation).

mcmc_cor_RR_slopefit <- mcmc_biv_RR$VCV[,"opp_size:at.level(trait, 1):traitfitness.ID"]/
(sqrt(mcmc_biv_RR$VCV[,"traitfitness:traitfitness.ID"])*

sqrt(mcmc_biv_RR$VCV[,"opp_size:at.level(trait, 1):opp_size:at.level(trait, 1).ID"]))

posterior.mode(mcmc_cor_RR_slopefit)

## var1
## 0.4804545

HPDinterval(mcmc_cor_RR_slopefit)

## lower upper
## var1 0.2212651 0.666549
## attr(,"Probability")
## [1] 0.95

Again, recall that variation in intercepts is among-individual variance for aggression at x=0 in a random
regression model, so the correlation between fitness and intercept is interpetable as the fitness-aggressiveness
correlation in this ‘environment’. It should not be too surprising that the intercept:fitness and slope:fitness
correlations are so similar, because we have seen from our earlier univariate random regression models that at
x=0 the intercept:slope correlations are very high. The earlier plots of predictions from random regressions
showed that those with higher intercepts at x=0 also tended to have higher slopes at that point.

So we do find a significant association between variation in aggression and in fitness. Below is the variance-
covariance matrix (with variances on the diagonal, correlations above, and covariances below):

Aggression Fitness Aggression:Opp
Aggression 0.04 0.48 0.87
Fitness 0.02 0.03 0.48
Aggression:Opp 0.06 0.03 0.15
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We can also visualise this result by extracting the BLUPs for each individual and plotting them. Note that
as in the previous tutorial, we think this is a reasonable use of BLUP. We are not running statistical analyses
on them, we are using the BLUPs (ie the model predictions) only as a visual aid for the interpretation of a
statistical model we have fitted. Remember that each of these points has a fair amount of uncertainty around
it! We also use the (co)variance estimates from our model to calculate the regression slope directly from the
bivariate random regression model:

# Get coefficients
df_biv_rr_coefs <- data_frame(Trait = attr(colMeans(mcmc_biv_RR$Sol), "names"),

Value = colMeans(mcmc_biv_RR$Sol)) %>%
separate(Trait, c("tmp","Trait","Type","ID"), sep = "\\.", fill = "left") %>%
filter(Type == "ID") %>%
filter(Trait %in% c("traitaggression",

"traitfitness",
"level(trait, 1)")) %>%

mutate(Trait = ifelse(Trait == "level(trait, 1)", "slopeaggression", Trait)) %>%
select(ID, Trait, Value) %>%
spread(Trait, Value)

# Calculate regression lines from the model fit (co)variances

ai_fit_slope <- mean(mcmc_biv_RR$VCV[,"traitaggression:traitfitness.ID"]/
mcmc_biv_RR$VCV[,"traitaggression:traitaggression.ID"])

as_fit_slope <- mean(mcmc_biv_RR$VCV[,"opp_size:at.level(trait, 1):traitfitness.ID"]/
mcmc_biv_RR$VCV[,"opp_size:at.level(trait, 1):opp_size:at.level(trait, 1).ID"])

# Create plots of fitness values against BLUPs of:
# (i) aggression intercepts,
# (ii) aggression slopes

gg_ai_fit <- ggplot(df_biv_rr_coefs,
aes(x = traitaggression,

y = traitfitness)) +
geom_abline(intercept = 0, slope = ai_fit_slope,

colour = "grey40") +
geom_point(alpha = 0.4) +
theme_classic()

gg_as_fit <- ggplot(df_biv_rr_coefs,
aes(x = slopeaggression,

y = traitfitness)) +
geom_abline(intercept = 0,

slope = as_fit_slope,
colour = "grey40") +

geom_point(alpha = 0.4) +
theme_classic()

grid.arrange(gg_ai_fit,
gg_as_fit,
ncol = 2)
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We can see that those with higher average aggression (at the intercept) tend to have higher fitness, but
also those that have higher slope values have higher fitness. These are often characterised as (for example)
correlations between fitness and average aggression, and fitness and plasticity. However, interpreting (and
generalising) this kind of result is actually more difficult than it seems. For instance, could we infer that
plasticity is under selection? Maybe, but not necessarily. For example, we know that slopes and intercepts
are strongly positively correlated (at x=0), so we would at least need to try and separate out the “direct”
effects of each “trait” (i.e. intercept and slope) on fitness. This could be done, following the conceptual
approach of classical selection analysis (e.g. Lande and Arnold 1983) by calculating the partial regressions
(interpretable as selection gradients) on intercept and slope on fitness.

We also know that significant among-individual variation in slopes really means that the among-individual
variation in aggression changes as a function of our x variable (here, opponent size): in other words, individual-
by-environment interactions are occurring. Furthermore, we know that the intercept-fitness covariance could
be used as a measure of selection on aggressiveness at x=0. So instead of trying to separate selection on the
trait (aggressiveness) mean from selection on plasticity, an alternative way of thinking about this scenario is
to ask how fitness relates to aggression at different values of opponent size.

In other words, how does selection on a trait change with environment? Getting a more concrete interpretation
of such results is where random regression models start to fall down a little. However, if our environmental
variable (here, opponent size) can be considered a set of distinct environments, we can move into an alternative
(and in our view better for many scenarios) way of modelling IxE. . .

Character state models

In fact, reaction norms as modelled here by ‘random regression’ can be viewed as (normally) reduced parameter
versions of what’s called a ‘character state’ model — for more details on this, we recommend the chapter
‘Quantifying Genotype-by-Environment Interactions in Laboratory Systems’ by Roff & Wilson in Hunt &
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Hosken’s 2014 textbook ‘Genotype-by-Environment Interactions and Sexual Selection’. A character state
approach posits that observations for each ‘environment’ (in this case, opponent size) are best modelled as
distinct environment-specific sub-traits using multivariate analyses. With a lot of environments you have a
lot of subtraits, so a lot of model parameters, and thus need a lot of data! This is one of the reasons why
random regression is popular - you reduce a potentially infinite number of sub traits to a line described by
just two parameters (intercept and slope). However, this saving comes at the cost of assuming a reaction
norm shape (and if your assumptions are poor you cannot expect your model to fit well) and sometimes – as
we have argued above – a lack of easy interpretation of your results.

Luckily, our experimental design here enables us to readily use a character state model. We have only 3
environments and plenty of data — moreover, because we have repeated measures within each ‘environment’,
we can partition among- from within-individual (co)variation across each (see Brommer (2013) ‘On between-
individual and residual (co)variances in the study of animal personality’ for further discussion of this
topic).

We’ll start by fitting just our aggression data in a character state model, meaning that we will estimate the
among-individual variance in (and covariance between) each of our ‘sub-traits’: aggression against opponents
1SD below the mean body size, aggression against opponents of mean body size, and aggression against
opponents 1SD above mean body size.

Modelling IxE for aggression

We need to do some rearranging of our data frame to structure it for this type of model. We want to end up
with an individual’s aggression values for each ‘environment’ (for a single block) on a single row in the data
frame, with each ‘sub-trait’ in a different column (let’s call these sub-traits agg_S, agg_M, and agg_L). Each
row will also have the observation of block, and the opponent body size measurement for that block.

In this case, we have already done the ‘data wrangling’ for you, and provided the rearranged data frame in a
new CSV file that we can load up straight away. However, at the end of this tutorial you will find the code
for how we did this from the original data.

df_plast_CS <- read_csv("aggression_CS.csv")

Check this new data frame to understand the format and how it relates to our original data frame:

head(df_plast_CS)

## # A tibble: 6 × 8
## ID block body_size agg_L agg_M agg_S opp_order fitness
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
## 1 ID_1 -0.5 20.58 10.67 10.22 7.02 S_L_M 1.033846
## 2 ID_1 0.5 20.73 10.51 8.95 8.44 M_L_S NA
## 3 ID_10 -0.5 28.32 10.81 9.43 7.73 L_S_M 0.960000
## 4 ID_10 0.5 28.80 10.67 9.46 8.08 L_S_M NA
## 5 ID_11 -0.5 22.89 9.77 7.63 8.06 S_L_M 1.083077
## 6 ID_11 0.5 23.62 10.84 8.23 8.16 S_L_M NA

We will first use a trivariate model to investigate (co)variances for our three ‘sub-traits’ (aggression for
each opponent size class). We bind these as three response variables, interacting the trait keyword with the
fixed effects of interest. Doing this means we estimate the effect of (for example) an individual’s body size on
aggression at each opponent size.

We use the us structure to estimate variances and covariances at both the among-individual (random)
and within-individual/residual (rcov) level. We’ll use an uninformative prior, parameter-expanded for the
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among-individual variances, with a long run (nitt), lengthy burnin and with a large thinning interval (thin).
Remember to check diagnostic plots once the model has finished (which will take quite some time!), and
that for acceptance of any final results we would need to check convergence of multiple runs, robustness to
different priors, and for the absence of autocorrelation among consecutive samples.

prior_triv_px <- list(R = list(V = diag(3), nu = 2.002),
G = list(G1 = list(V = matrix(c(1,0,0,

0,1,0,
0,0,1),3,3,

byrow = TRUE),
nu = 3,
alpha.mu = rep(0,3),
alpha.V = diag(25^2,3,3))))

mcmc_triv_CS <- MCMCglmm(cbind(agg_S,
agg_M,
agg_L) ~ trait +
trait:opp_order +
trait:block +
trait:scale(body_size),

random =~ us(trait):ID,
rcov =~ us(trait):units,
family = c("gaussian","gaussian","gaussian"),
prior = prior_triv_px,
nitt=950000,
burnin=50000,
thin=450,
verbose = TRUE,
data = as.data.frame(df_plast_CS),
pr = TRUE,
saveX = TRUE, saveZ = TRUE)

The summary of fixed effects terms enable us to calculate the mean aggression for each trait: (Intercept) is
aggression against small opponents, while traitagg_M is the average difference between aggression against
small and medium opponents, and traitagg_L is the average difference between small and large. Aggression
seems to increase in a roughly linear fashion across these three increasing opponent ‘environments’, which is
what we expected from our initial plot of the data and from the random regression models. The pMCMC values
for traitagg_M and traitagg_L show whether they are significantly different from the overall (Intercept),
i.e. aggression against small opponents. You could, of course, change the order of traits if you were particularly
interested in this (e.g., with agg_M as the first trait such that you test for significant differences of both agg_S
and agg_L from this). We haven’t shown the results here as they are quite lengthy, but use the following
code to look at the fixed effects output:

summary(mcmc_triv_CS)$solutions

You’ll see that there are various values for order now because it is a many-level factor, with effects fitted for
each of our response variables — we don’t have a single p-value for this parameter, but we can see that (as
expected) there do not seem to be any large or significant fixed effects.

Let’s move on to the variance components, looking at both among- and within-individual (co)variances for all
traits:
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summary(mcmc_triv_CS)$Gcovariances

## post.mean l-95% CI u-95% CI eff.samp
## traitagg_S:traitagg_S.ID 0.1883781 0.06429334 0.31903840 2009.924
## traitagg_M:traitagg_S.ID -0.1423395 -0.23571596 -0.04153836 2000.000
## traitagg_L:traitagg_S.ID -0.1329159 -0.23755768 -0.02521122 2007.987
## traitagg_S:traitagg_M.ID -0.1423395 -0.23571596 -0.04153836 2000.000
## traitagg_M:traitagg_M.ID 0.2348929 0.09228423 0.38284429 2130.234
## traitagg_L:traitagg_M.ID 0.1478959 0.03029400 0.27338211 2000.000
## traitagg_S:traitagg_L.ID -0.1329159 -0.23755768 -0.02521122 2007.987
## traitagg_M:traitagg_L.ID 0.1478959 0.03029400 0.27338211 2000.000
## traitagg_L:traitagg_L.ID 0.2898116 0.10909500 0.48897790 2000.000

summary(mcmc_triv_CS)$Rcovariances

## post.mean l-95% CI u-95% CI eff.samp
## traitagg_S:traitagg_S.units 0.351255358 0.24941379 0.46239079 2000.000
## traitagg_M:traitagg_S.units -0.005402429 -0.09122089 0.06630601 1772.066
## traitagg_L:traitagg_S.units -0.020496590 -0.11329398 0.07275955 2371.019
## traitagg_S:traitagg_M.units -0.005402429 -0.09122089 0.06630601 1772.066
## traitagg_M:traitagg_M.units 0.359559838 0.24945395 0.47016333 1863.637
## traitagg_L:traitagg_M.units 0.166101952 0.07883660 0.27639930 1742.954
## traitagg_S:traitagg_L.units -0.020496590 -0.11329398 0.07275955 2371.019
## traitagg_M:traitagg_L.units 0.166101952 0.07883660 0.27639930 1742.954
## traitagg_L:traitagg_L.units 0.458199509 0.31572030 0.62196184 2000.000

Estimating repeatabilities of each trait

Another useful point of character state models is that we can estimate ‘repeatability’ for each trait (i.e., the
proportion of phenotypic variation, conditional on the fixed effects, that is explained by differences among
individuals). Similar to how we calculate the posterior distribution of correlations from (co)variances (to then
get their estimate and 95% CIs), we can create posterior distributions of repeatabilities for each sub-trait:

mcmc_triv_rep_S <- mcmc_triv_CS$VCV[,"traitagg_S:traitagg_S.ID"]/
(mcmc_triv_CS$VCV[,"traitagg_S:traitagg_S.ID"] +

mcmc_triv_CS$VCV[,"traitagg_S:traitagg_S.units"])

mcmc_triv_rep_M <- mcmc_triv_CS$VCV[,"traitagg_M:traitagg_M.ID"]/
(mcmc_triv_CS$VCV[,"traitagg_M:traitagg_M.ID"] +

mcmc_triv_CS$VCV[,"traitagg_M:traitagg_M.units"])

mcmc_triv_rep_L <- mcmc_triv_CS$VCV[,"traitagg_L:traitagg_L.ID"]/
(mcmc_triv_CS$VCV[,"traitagg_L:traitagg_L.ID"] +

mcmc_triv_CS$VCV[,"traitagg_L:traitagg_L.units"])

df_mcmc_reps <- data_frame(Traits = c("Small",
"Medium",
"Large"),

Estimate = c(mean(mcmc_triv_rep_S),
mean(mcmc_triv_rep_M),
mean(mcmc_triv_rep_L)),
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Lower = c(HPDinterval(mcmc_triv_rep_S)[,"lower"],
HPDinterval(mcmc_triv_rep_M)[,"lower"],
HPDinterval(mcmc_triv_rep_L)[,"lower"]),

Upper = c(HPDinterval(mcmc_triv_rep_S)[,"upper"],
HPDinterval(mcmc_triv_rep_M)[,"upper"],
HPDinterval(mcmc_triv_rep_L)[,"upper"]))

ggplot(df_mcmc_reps, aes(x = Traits, y = Estimate)) +
geom_pointrange(aes(ymin = Lower,

ymax = Upper)) +
scale_x_discrete(limits = c("Small","Medium","Large")) +
labs(x = "Opponent size",

y = "Proportion of phenotypic variance\nexplained by differences among individuals") +
ylim(c(0,1)) +
theme_classic()
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Here the three repeatabilities are quite similar. While we know that the credible intervals for variances will
not include zero, we can see that the CIs for each repeatability are quite distinct from zero, and we can
interpret these as ‘significant’ repeatabilities for aggression at each opponent size.

Cross-context correlations

Again, it can be easier to convert the covariances to correlations so that we can compare these ‘standardised’
associations directly – in this case, we’ll calculate the posterior distribution of correlations for aggression
across each pair of ‘environments’, and plot their estimate and associated 95% CIs:
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mcmc_triv_cor_S_M <- mcmc_triv_CS$VCV[,"traitagg_S:traitagg_M.ID"]/
(sqrt(mcmc_triv_CS$VCV[,"traitagg_S:traitagg_S.ID"])*

sqrt(mcmc_triv_CS$VCV[,"traitagg_M:traitagg_M.ID"]))

mcmc_triv_cor_M_L <- mcmc_triv_CS$VCV[,"traitagg_M:traitagg_L.ID"]/
(sqrt(mcmc_triv_CS$VCV[,"traitagg_M:traitagg_M.ID"])*

sqrt(mcmc_triv_CS$VCV[,"traitagg_L:traitagg_L.ID"]))

mcmc_triv_cor_S_L <- mcmc_triv_CS$VCV[,"traitagg_L:traitagg_S.ID"]/
(sqrt(mcmc_triv_CS$VCV[,"traitagg_L:traitagg_L.ID"])*

sqrt(mcmc_triv_CS$VCV[,"traitagg_S:traitagg_S.ID"]))

df_mcmc_cors <- data_frame(Traits = c("Small, Medium",
"Medium, Large",
"Small, Large"),

Estimate = c(posterior.mode(mcmc_triv_cor_S_M),
posterior.mode(mcmc_triv_cor_M_L),
posterior.mode(mcmc_triv_cor_S_L)),

Lower = c(HPDinterval(mcmc_triv_cor_S_M)[,"lower"],
HPDinterval(mcmc_triv_cor_M_L)[,"lower"],
HPDinterval(mcmc_triv_cor_S_L)[,"lower"]),

Upper = c(HPDinterval(mcmc_triv_cor_S_M)[,"upper"],
HPDinterval(mcmc_triv_cor_M_L)[,"upper"],
HPDinterval(mcmc_triv_cor_S_L)[,"upper"]))

ggplot(df_mcmc_cors, aes(x = Traits, y = Estimate)) +
geom_pointrange(aes(ymin = Lower,

ymax = Upper)) +
geom_hline(yintercept = 0,

linetype = "dotted",
alpha = 0.3) +

geom_hline(yintercept = -1,
linetype = "dotted",
alpha = 0.3) +

geom_hline(yintercept = 1,
linetype = "dotted",
alpha = 0.3) +

labs(x = "Environment combinations",
y = "Correlation (Estimate +/- 95% CIs)") +

ylim(-1,1) +
coord_flip() +
theme_classic()

Individual differences in behavioural plasticity 27



Character state models MCMCglmm tutorial BEHAVIOURAL PLASTICITY

Medium, Large

Small, Large

Small, Medium

−1.0 −0.5 0.0 0.5 1.0

Correlation (Estimate +/− 95% CIs)

E
nv

iro
nm

en
t c

om
bi

na
tio

ns

Here we see that the among-individual correlations differ greatly across combinations of ‘environments’: the
correlation is positive between medium and large opponents, while between small:medium and small:large the
correlation is negative. Looking at the raw data that we plotted at the beginning of the tutorial, this makes
sense — those least aggressive against small opponents tend to be most aggressive against large opponents,
and vice versa. We can also see that the 95% credible intervals do not cross zero for any of these correlations,
suggesting that they are statistically significant (in whichever direction the correlation is).

Variances, repeatabilities, correlations and IxE

So far we have seen that the character state approach lets us estimate among-individual variance (and
repeatabilities) in, and covariance/correlation between, a set of environment-specific sub-traits. But how
does this relate to IxE?

In the absence of IxE, an individual’s random effect size is – by definition – constant with E. It therefore follows
that the variance in random effects (i.e., the among-individual variance) is the same in each environment. It
also follows that the (among-individual) correlations between environment-specific sub-traits will all be r =
+1.

We can therefore use the 95% CIs as presented above for the cross-context correlations, and look at whether
these include r = +1. Clearly we can see that small:medium and medium:large show IxE, as we have
significantly negative correlations. For medium:large, while the correlation is significantly positive then it is
clear that it is quite far from +1, indicating that IxE also exists across these contexts.

We should also make sure to look at the raw among-individual variances and residual/‘within-individual’
variances withing each environment, in addition to their repeatabilities. While the repeatabilities here are very
similar, if you look back to the summary tables you can see that there is quite a lot more among-individual
variation in aggression at large opponent size than at small opponent size; the repeatabilities are similar
because there is also greater residual variation at large opponent size than at small. This is important in
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the context of IxE because, if there were to be no differences in how individuals respond to environmental
change, they should all act in parallel and therefore the among-individual variance should not change across
environments/contexts!

Plotting the character state model

Similar to how we visualised the random regression model, we can use BLUPs to extract individual-level
predictions from the model to plot predicted aggression for each individual across each environment. Here we
use the predict function from MCMCglmm to get predicted values for each trait and for every ID. Because the
predict function in MCMCglmm is a little confusing, this includes all fixed effects and does give us a predicted
value for each block for each individual. We’ll simply take the average of an individual’s predictions in each
environment for this plot. For ease of plotting, we also create a new variable that we set to -1/0/1 depending
on which opponent size environment the prediction is for.

# Get predictions from MCMCglmm model
aggr_CS_preds <- predict(mcmc_triv_CS, marginal = NULL)

# These come as a single vector, so we need
# to associate them with the correct individuals
# and as the right opponent size predictions.
# We also simply average over blocks within each
# environment for the purposes of plotting.
df_cs_ind <- cbind(df_plast_CS,

fit_S = aggr_CS_preds[1:160],
fit_M = aggr_CS_preds[161:320],
fit_L = aggr_CS_preds[321:480]) %>%

select(ID, fit_S, fit_M, fit_L) %>%
group_by(ID) %>%
summarise(fit_S = mean(fit_S),

fit_M = mean(fit_M),
fit_L = mean(fit_L))

# Add numeric value for easier plotting on x-axis
df_cs_ind <- df_cs_ind %>%

gather(opp_size, aggression,
fit_S:fit_L) %>%

mutate(sizeNum = ifelse(opp_size == "fit_S", -1,
ifelse(opp_size == "fit_M", 0, 1)))

# Plot values
ggplot(df_cs_ind, aes(x = sizeNum,

y = aggression,
group = ID)) +

geom_line(alpha = 0.2) +
scale_x_continuous(breaks = c(-1,0,1)) +
labs(x = "Opponent size (SDU)",

y = "Aggression (SDU)") +
theme_classic()
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Here, this brings together all facets of our character state analysis. We can see that (i) there is an increase in
average aggression due to opponent size; (ii) correlations differ such that small:medium is negative, while
medium:large is positive; (iii) there is greater among-individual variation in aggression when the opponent
is large compared to when the opponent is small; (iv) there are changes in the rank order of individual
aggression across environments (crossing reaction norms), so among-individual correlations are not perfect
and we have evidence of IxE for aggression against different opponent sizes.

We can also compare this model fit to both the original data, and the fit from the MCMCglmm random regression:
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Character state

Adding fitness to character state model

As we discussed earlier, one of the challenges with reaction norm models can be that adding (and, more
pertinently, interpreting associations with) another trait (or response variable) can be confusing. Given
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suitable data, character state models are an excellent solution because we can simply add a further response
variable and fit all correlations. Instead of thinking about how selection acts on plasticity, we will be thinking
about how selection on the trait (aggression) changes with environment (opponent size). Crucially (although
perhaps not obviously!) they are the same thing, just seen from alternative viewpoints (reaction
norm vs character state).

Now, let’s add fitness to create a 4-variable response trait in a new model. Remember that fitness has
only a single measure per individual, so we use the prior to fix its residual (within-individual) variance
to essentially zero. This should also have the effect of keeping the residual covariances featuring fitness to
essentially zero as well.

Also note that we use the at.level keyword to apply the fixed effects only to the aggression observations
(i.e., traits 1:3 of the 4-trait response).

prior_quad_px <- list(R = list(V = diag(c(1,1,1,0.0001)), nu = 2.002, fix = 4),
G = list(G1 = list(V = matrix(c(1,0,0,0,

0,1,0,0,
0,0,1,0,
0,0,0,1),4,4,

byrow = TRUE),
nu = 4,
alpha.mu = rep(0,4),
alpha.V = diag(25^2,4,4))))

mcmc_quad_CS <- MCMCglmm(cbind(agg_S,
agg_M,
agg_L,
fitness) ~ trait +

at.level(trait,1:3):opp_order +
at.level(trait,1:3):block +
at.level(trait,1:3):scale(body_size),

random =~ us(trait):ID,
rcov =~ us(trait):units,
family = c("gaussian","gaussian","gaussian","gaussian"),
prior = prior_quad_px,
nitt=950000,
burnin=50000,
thin=450,
verbose = TRUE,
data = as.data.frame(df_plast_CS),
pr = TRUE,
saveX = TRUE, saveZ = TRUE)

As always, use diagnostic plots etc to check that the model has converged in a reasonable manner (and again,
if we were using this model for publication we would need to do various other checks before accepting it).
You’ll likely get a warning message about not being able to estimate some of the fixed effects (because order
is now a factor with many levels) – in this case we can ignore it, as we are keeping those variables in as
statistical controls only (and we know from earlier tests that they make little difference to our model).

Here, let’s skip to the results. The summary for this model is quite big, so we can just take sections of it in
turn. First, let’s look at the among-individual (co)variances:

summary(mcmc_quad_CS)$Gcovariances
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## post.mean l-95% CI u-95% CI
## traitagg_S:traitagg_S.ID 0.18235037 0.050695833 0.319084259
## traitagg_M:traitagg_S.ID -0.13354092 -0.235348171 -0.034987391
## traitagg_L:traitagg_S.ID -0.12648350 -0.232284328 -0.016221405
## traitfitness:traitagg_S.ID -0.01331098 -0.036002253 0.008907543
## traitagg_S:traitagg_M.ID -0.13354092 -0.235348171 -0.034987391
## traitagg_M:traitagg_M.ID 0.22991308 0.083792272 0.381687934
## traitagg_L:traitagg_M.ID 0.14905770 0.029898843 0.278241316
## traitfitness:traitagg_M.ID 0.01695767 -0.006348472 0.041865045
## traitagg_S:traitagg_L.ID -0.12648350 -0.232284328 -0.016221405
## traitagg_M:traitagg_L.ID 0.14905770 0.029898843 0.278241316
## traitagg_L:traitagg_L.ID 0.30632779 0.128210763 0.514804286
## traitfitness:traitagg_L.ID 0.05150078 0.022615785 0.083310059
## traitagg_S:traitfitness.ID -0.01331098 -0.036002253 0.008907543
## traitagg_M:traitfitness.ID 0.01695767 -0.006348472 0.041865045
## traitagg_L:traitfitness.ID 0.05150078 0.022615785 0.083310059
## traitfitness:traitfitness.ID 0.02737288 0.019421906 0.036316355
## eff.samp
## traitagg_S:traitagg_S.ID 2000.000
## traitagg_M:traitagg_S.ID 2000.000
## traitagg_L:traitagg_S.ID 2000.000
## traitfitness:traitagg_S.ID 2144.143
## traitagg_S:traitagg_M.ID 2000.000
## traitagg_M:traitagg_M.ID 2020.432
## traitagg_L:traitagg_M.ID 2000.000
## traitfitness:traitagg_M.ID 1761.170
## traitagg_S:traitagg_L.ID 2000.000
## traitagg_M:traitagg_L.ID 2000.000
## traitagg_L:traitagg_L.ID 2000.000
## traitfitness:traitagg_L.ID 2000.000
## traitagg_S:traitfitness.ID 2144.143
## traitagg_M:traitfitness.ID 1761.170
## traitagg_L:traitfitness.ID 2000.000
## traitfitness:traitfitness.ID 2000.000

As a sanity check, it’s a good idea to compare the among-individual (co)variances for the aggression traits
here with those found in the previous trivariate model (of course, there will be small differences because of
the MCMC sampling, but should be roughly the same).

We can also check the residual (co)variances, ensuring that we did constrain the residual (or ‘within-individual’)
variance in fitness to 0.0001. The covariances will have been estimated here, but they should be essentially 0
(which you can see from their estimate and the credible intervals):

summary(mcmc_quad_CS)$Rcovariances

## post.mean l-95% CI u-95% CI
## traitagg_S:traitagg_S.units 3.581584e-01 0.252594492 0.476143484
## traitagg_M:traitagg_S.units -1.058100e-02 -0.093522953 0.068361734
## traitagg_L:traitagg_S.units -2.727021e-02 -0.119320318 0.061872066
## traitfitness:traitagg_S.units 9.611125e-05 -0.003148960 0.003805668
## traitagg_S:traitagg_M.units -1.058100e-02 -0.093522953 0.068361734
## traitagg_M:traitagg_M.units 3.683274e-01 0.257539309 0.489049277
## traitagg_L:traitagg_M.units 1.696161e-01 0.077484113 0.267932036
## traitfitness:traitagg_M.units 1.891748e-04 -0.003662057 0.003762664
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## traitagg_S:traitagg_L.units -2.727021e-02 -0.119320318 0.061872066
## traitagg_M:traitagg_L.units 1.696161e-01 0.077484113 0.267932036
## traitagg_L:traitagg_L.units 4.515262e-01 0.315904287 0.596351696
## traitfitness:traitagg_L.units 5.788416e-04 -0.003872096 0.004507275
## traitagg_S:traitfitness.units 9.611125e-05 -0.003148960 0.003805668
## traitagg_M:traitfitness.units 1.891748e-04 -0.003662057 0.003762664
## traitagg_L:traitfitness.units 5.788416e-04 -0.003872096 0.004507275
## traitfitness:traitfitness.units 1.000000e-04 0.000100000 0.000100000
## eff.samp
## traitagg_S:traitagg_S.units 2000.000
## traitagg_M:traitagg_S.units 2000.000
## traitagg_L:traitagg_S.units 2271.433
## traitfitness:traitagg_S.units 2000.000
## traitagg_S:traitagg_M.units 2000.000
## traitagg_M:traitagg_M.units 1767.183
## traitagg_L:traitagg_M.units 1870.145
## traitfitness:traitagg_M.units 1809.804
## traitagg_S:traitagg_L.units 2271.433
## traitagg_M:traitagg_L.units 1870.145
## traitagg_L:traitagg_L.units 1658.481
## traitfitness:traitagg_L.units 1815.984
## traitagg_S:traitfitness.units 2000.000
## traitagg_M:traitfitness.units 1809.804
## traitagg_L:traitfitness.units 1815.984
## traitfitness:traitfitness.units 0.000

Of course, we are most interested in how among-individual variation in aggression in each ‘environment’
is associated with fitness variation. For ease of interpretation, we shall convert these aggression:fitness
covariances to correlations. Just as we visualised the cross-environment correlations for aggression in our
trivariate model, a nice way to look at (and assess the significance of) these fitness:environment-specific
aggression correlations is to plot their estimates and 95% credible intervals:

Individual differences in behavioural plasticity 33



Adding fitness to character state model MCMCglmm tutorial BEHAVIOURAL PLASTICITY

Small

Medium

Large

−1.0 −0.5 0.0 0.5 1.0

Aggression:fitness correlation (Estimate +/− 95% CIs)

O
pp

on
en

t s
iz

e

We can see from this figure that the correlations between fitness and opponent size-specific aggression
varies widely across opponent size classes: from negative (and non-significant) against small opponents to
positive (and non-significant) against average-sized opponents, up to positive and significant against large
opponents. So qualitatively at least, it seems that estimated selection on individual aggressiveness goes from
weakly negative with small opponents, through to more strongly positive for large opponents.
Let’s finish by plotting the association between relative fitness and individual deviations (BLUPs) for
aggression at each opponent size ‘environment’. We’ve provided the code below to do this at the level of small
opponents, and you can rework some of it to do the same for the other two opponent size ‘environments’:

# Get BLUPs for all traits
df_aggr_fit_coefs <- data_frame(Trait = attr(colMeans(mcmc_quad_CS$Sol), "names"),

Value = colMeans(mcmc_quad_CS$Sol)) %>%
separate(Trait, c("Trait","Type","ID"), sep = "\\.", fill = "right") %>%
filter(Type == "ID")

# Subset for small, fitness
# and reform for easier plotting
df_S_fit_coefs <- df_aggr_fit_coefs %>%

filter(Trait %in% c("traitagg_S", "traitfitness")) %>%
select(-Type) %>%
spread(Trait, Value)

# Find the regression line for this opponent size:
# the covariance of aggression(S), relative fitness
# divided by the variance in aggression(S)
s_fit_slope <- mean(mcmc_quad_CS$VCV[,"traitagg_S:traitfitness.ID"]/

mcmc_quad_CS$VCV[,"traitagg_S:traitagg_S.ID"])
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gg_s_fit <- ggplot(df_S_fit_coefs, aes(x = traitagg_S,
y = traitfitness,
group = ID)) +

geom_point(alpha = 0.7) +
geom_abline(intercept = 0, slope = s_fit_slope) +
labs(x = "Aggression (BLUP)",

y = "Relative fitness (BLUP)",
title = "Small") +

theme_classic()
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Conclusions

Using both random regression and character state models, we find evidence of significant among-individual
variance in aggressiveness. We also show that, on average, there is a plastic response manifest as higher
aggression toward larger opponents. Since IxE is present we can also say that individuals differ in their
plastic responses to opponent size. In our view however, the magnitude and nature of the IxE is more
readily interpreted under the character state model because this enables us to estimate environment-specific
among-individual variances and covariances (in addition to their derived repeatabilities and correlations).
Importantly, the fact that under a null hypothesis of no IxE we expect the variances to be equal and the
cross-environment correlations to be +1 means we have a clear point of comparison against which to both
test and interpret the IxE.

We found strong associations between higher levels of aggression and fitness using both types of model.
However, while the results of the random regression model can be interpreted in terms of selection on
plasticity and intercept, there are dangers of doing so if one doesn’t fully understand (i) the dependence of
model outputs on the scaling/centring of the X axis, and/or (ii) the need to fully account for slope-intercept
covariance, if the goal is to test for “selection on plasticity”. In contrast, the character state model yields
estimates of selection in each environment that are easily interpreted. Using this method, we found that the
only significant covariance between fitness and aggression was when aggression was measured against large
opponents. Here, greater aggression was significantly linked to higher fitness. Aggression against average and
small opponents was not significantly associated with fitness.
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Data wrangling

Below, we demonstrate how to do some ‘data wrangling’ to turn the standard long format into a different
(‘wide’) format that can be used for character state models.
We need to do some rearranging of our data frame to structure it for this type of model. We want to end up
with the aggression values for each ‘environment’ (for a single block) on a single row in the data frame, with
each sub-trait in a different column. Each row will also have the observation of block, and the opponent body
size measurement for that block.
First, we should name these traits agg_S, agg_M, and agg_L respectively (and we are reloading the original
data first into a new data frame):

df_plast_2 <- read_csv("aggression.csv")

df_plast_2 <- df_plast_2 %>%
mutate(opp_type = ifelse(opp_size == -1, "agg_S",

ifelse(opp_size == 0, "agg_M",
"agg_L")))

This does mean that we need to turn our assay repeat variable into an ‘order’ variable, so that we can test
for any systematic effects of opponent size order in the model:

# Create a new data frame, 'df_order',
# which holds the 'order' of opponents for each individual in each block
df_order <- df_plast_2 %>%

select(ID, block, assay_rep, opp_type) %>%
arrange(ID, block, assay_rep) %>%
separate(opp_type, into = c("tmp","opp_type")) %>%
select(-tmp) %>%
spread(assay_rep, opp_type) %>%
unite(opp_order, `1`:`3`)

We now want to ‘spread’ our aggression observations across separate columns, such that each row has a value
for aggression in each of the three opponent size classes (where 1 row represents an individual’s observations
for one block). Having spread these values across distinct columns, we then join the data frame of ‘order’
values to it.
Note: here we are not going to standardise aggression measurements to (for example) standard deviation
units, but if you wanted to do that you must do it before spreading them across multiple rows. That would
not only scale them by the overall phenotypic SD, but if you centred them as well you would retain differences
in the mean values across opponent size classes (so you could still model population-level plasticity).

# Spread aggression values across different
# opponent sizes
df_plast_CS <- df_plast_2 %>%

select(ID, block, aggression, body_size, opp_type) %>%
spread(opp_type, aggression)

# Add values for order of opponent sizes
df_plast_CS <- left_join(df_plast_CS,

df_order,
by = c("ID","block"))

. . . and quickly check to make sure the new data frame looks the way we wanted:
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head(df_plast_CS)

We did not include fitness here because it makes the spreading of our aggression columns difficult, but we
can add this back to our data frame now — remembering to make sure it is only repeated once per individual:

# Create new df containing non-NA fitness values for each individual:
df_fit <- df_plast_2 %>%

select(ID, fitness) %>%
filter(!is.na(fitness))

# Join to the CS data frame
df_plast_CS <- left_join(df_plast_CS,

df_fit,
by = "ID")

# Delete duplicates in fitness
# - easy way here is to keep only those with one of the blocks
df_plast_CS <- df_plast_CS %>%

mutate(fitness = ifelse(block == -0.5, fitness, NA))

Finally, let’s standardise fitness to ‘relative fitness’ by dividing by the population mean:

df_plast_CS <- df_plast_CS %>%
mutate(fitness = fitness/mean(fitness, na.rm=TRUE))

. . . and check the results of our wrangling efforts:

head(df_plast_CS)

Again, http://r4ds.had.co.nz/ is the place to go to learn more about the tidyverse packages used for this
kind of ‘data wrangling’.
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